CLASS XII SAMPLE PAPER-041 MATHS

Time allowed : 3 hours
Maximum
Marks : 100

General Instructions:

(i) All questions are compulsory.
(ii) This question paper contains 29 questions.
(iii) Question 1-4 in Section \mathbf{A} are very short-answer type questions carrying 1 mark each.
(iv) Question 5-12 in Section B are short-answer type questions carrying 2 marks each.
(v) Question 13-23 in Section C are long-answer-I type questions carrying 4 marks each.
(vi) Question 24-29 in Section D are long-answer-II type questions carrying 6 marks each.

> Se cti
> on
> -A

Questions 1 to 4 carry 1 mark each.

1. What is the principal value of $\cos ^{-1}\left(\cos \frac{2 \pi}{3}\right)+\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$?
2. Let $f: R \rightarrow R$ be defined as $f(x)=10 x+7$. Find the function $g: R \rightarrow R$ such that $g o f=f o g=I_{R}$.
3. Using elementary transformations, find the inverse matrix, $\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$.
4. What are the direction cosines of a line which makes equal angles with the coordinate axes?

chse	
CBuess	CBSEGuess.com

Section-B

Questions 5 to 12 carry 2 marks each.

5. Evaluate: $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2 x \log \sin x d x$.
6. If $\mathrm{f}(\mathrm{x})=|\cos x|$, find $f^{\prime}\left(\frac{3 \pi}{4}\right)$.
7. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?
8. Find the area of the parallelogram determined by the vectors $\hat{\imath}+2 \hat{\jmath}+$ $3 \hat{k}$ and $3 \hat{\imath}-2 \hat{\jmath}+\hat{k}$.
9. Find the probability of a diamond card in each of the two consecutive draws from a well-shuffled pack of cards, if the card drawn is not replaced after the first draw.
10. Prove that the function $\mathrm{f}: \mathrm{R} \rightarrow R$ defined as $f(x)=2 x-3$ is invertible. Also find f^{1}.
11.Find the value of $\mathrm{x}, \mathrm{y}, \mathrm{z}$, if the matrix $\mathrm{A}\left[\begin{array}{ccc}0 & 2 y & z \\ x & y & -z \\ x & -y & z\end{array}\right]$ satisfy the equation $\mathrm{A}^{\mathrm{T}} \mathrm{A}=I_{3}$.
11. Differentiate $\tan ^{-1}\left(\frac{1+2 x}{1-2 x}\right)$ with respect to $\sqrt{1+4 x^{2}}$.

SECTION C

Questions 13 to 23 carry 4 marks each.

13.If $\mathrm{y}(\mathrm{x})$ is a solution of $\left(\frac{2+\sin x}{1+y}\right) \frac{d y}{d x}=-\cos x$ and $\mathrm{y}(0)=1$, find the value of $\mathrm{y}\left(\frac{\pi}{2}\right)$.
14.Using properties of determinants, show that $\left|\begin{array}{lll}y+z & x & y \\ z+x & z & x \\ x+y & y & z\end{array}\right|=(x+y+$ $z)(z-x)^{2}$.

OR
Find the value of θ satisfying $\left|\begin{array}{ccc}1 & 1 & \sin 3 \theta \\ -4 & 3 & \cos 2 \theta \\ 7 & -7 & -2\end{array}\right|=0$.
15.If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}} \\ k, \quad x=2\end{array}, x \neq 2\right.$ is continuous at $\mathrm{x}=2$, find the value of k .

OR
A function $\mathrm{f}(\mathrm{x})$ is defined as follows: $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x} \\ 0, \text { if } x=0\end{array}\right.$, if $x \neq 0$ show that $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$.
16.Prove that $\frac{d}{d x}\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right]=\sqrt{a^{2}-x^{2}}$.

OR
If $\mathrm{x} \sqrt{1+y}+y \sqrt{1+x}=0,(\mathrm{x} \neq y)$ prove that: $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$.
17.Find the equation of curve passing through the point $(1,1)$, if the tangent drawn at any point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ on the curve meets the coordinates axes at A and B such that P is the mid-point of $A B$.
18.Evaluate : $\int \frac{d x}{\sin (x-a) \cdot \cos (x-b)}$.

OR

Evaluate $\int \frac{x e^{2 x}}{(1+2 x)^{2}} d x$.
19.Two bikers are running at the speed more than speed allowed on the road along lines $\vec{r}=(3 \mathrm{i}+5 \mathrm{j}+7 \mathrm{k})+\lambda(\mathrm{i}-2 \mathrm{j}+\mathrm{k})$ and $\overrightarrow{\mathrm{r}}=(-\mathrm{i}-\mathrm{j}-\mathrm{k})+\mu(7 \mathrm{i}-6 \mathrm{j}+$ k).Using shortest distance , check whether they meet to an accident or not.
20. An urn contains m white and n black balls . A ball is drawn at random and is put back into the urn along with k additional balls of the same colour as that of the ball drawn. A ball is again drawn at random. Show that the probability of drawing a white ball does not depends on k .
21.A clever student used a biased coin so that the head is 3 times as likely to occur as tail . If the coin is tossed twice, find the probability distribution and mean of numbers of tails.
22.Let $\vec{a}=2 \mathrm{i}+\mathrm{k}, \vec{b}=\mathrm{i}+\mathrm{j}+\mathrm{k}$ and $\vec{c}=4 \mathrm{i}-3 \mathrm{j}+7 \mathrm{k}$ be three vectors. Find a vector \vec{r} which satisfies $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$.
23.Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone.

SECTION D

Questions 24 to 29 carry 6 marks each.

24. Solve the equation $\sin \left[2 \cos ^{-1}\left\{\cot \left(2 \tan ^{-1} x\right)\right\}\right]=0$.
25.A diet for a sick person must contain atleast 4000 units of vitamins, 50 units of minerals and 1400 calories. Two foods A and B are available at a cost of Rs. 4 and Rs. 3 per unit, respectively. 1 unit of food A contains 200 units of vitamins, 1 unit of minerals and 40 calories, Food B contains 100 units of vitamins, 2 units of minerals and 40 calories. Find what combination of food should be used to have the least cost. Why a proper diet required for us.

OR

A small firm manufactures shirts and trouser. Total number of shirts and trousers that it can handle per day is atmost 24 . It takes 1 hr to make a trouser and half an hour to make a shirt. The maximum number of hours available per day is 16 . If the profit on a shirt is Rs. 100 and that on a trouser is Rs.300, then how many of each should be produced daily to maximise the profit?
26.For $x>0$, let $f(x)=\int_{1}^{x} \frac{\log _{e} t}{1+t} d t$. Find the function $f(x)+f\left(\frac{1}{x}\right)$ and show that $(e)+f\left(\frac{1}{e}\right)=\frac{1}{2}$.
27. Find A^{-1}, if $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ and show that $A^{-1}=\frac{\mathrm{A}^{2}-31}{2}$.
28. Find the distance of the point $(-2,3,-4)$ from the line $\frac{x+2}{3}=\frac{2 y+3}{4}=\frac{3 z+4}{5}$ measured parallel to the plane $4 \mathrm{x}+12 \mathrm{y}-3 \mathrm{z}+1=0$.
29.Using integration , find the area of the region enclosed between the circles $x^{2}+y^{2}=4$ and $(x-2)^{2}+y^{2}=4$.

[^0]
[^0]: By: Ankit Kumar Agrawal

